Traffic Flow Forecasting in Leisure Farm Areas Using Artificial Neural Networks
نویسنده
چکیده
Leisure agriculture experiences continuous development. However, because most leisure farm areas are located in isolated or remote regions and the planning and construction of traffic networks is greatly restricted by terrain and geographical features, the roads in these areas are narrower than those in other regions. This study focuses on traffic flow forecasting using the advanced artificial intelligence technology of artificial neural networks (ANNs) and makes a positive contribution to the forecasting methods for traffic flow regarding leisure farm areas. Streszczenie. W artykule przedstawiono zaawansowany sposób prognozowania ruchu ulicznego w rejonach ośrodków wypoczynkowych, oparty na budowie sieci neuronowych (ANN). Opracowana metoda, zwiększa stan wiedzy na temat przewidywania płynności ruchu ulicznego w tych rejonach. (Prognozowanie płynności ruchu ulicznego w rejonach ośrodków wypoczynkowych, z zastosowaniem sztucznych sieci neuronowych).
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملForecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کاملUsing the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting
The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models. Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...
متن کامل